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SUMMARY

A numerical technique has been developed to compute the optimum
spanwise load distyribution on nonplanar wings of arbitrary shepe.
Complex curved wing configurations with multiple fénces can be analyzed
with this technique. M. M. Muik's criterion for minimum induced drag
vas used. The problem is solved in the two-dimensional. Trefftz plane.
The two-dimensional shed vortex sheet is assumed to have the same shape
as che nonplenar wing. froem which it has been shed.

J. L. Lund¥y of the McDonnell Douglas Corporation found an’ingen-
Jous solution to this problem by computing the potential flow field,
vhich would satisfy Munk's criterion. Lundry's method requires a
Schwartz-Christoffel conformal transformation.

The method developed in this papsr is different in that the
numerical. technique does not require a conformal transformation. The
vortex 'sheet in the Trefftz plane is subdivided into 2N zegments.

Each vortex sheet segment ig assumed to have a linear vorticity digptrie
bution. The velocity induced at N-Q stations is determined Wwith the:
Biot-Savart law. Because of gymmetry it iz sufficient to..compute the
vélocities in one half of the vortex sheet. A set of N~} equations

has been derived with as many unknowna. The unknowns are the strength
of the shed vortex sheet at N-Q stationz. Munk's criterion provides
the condition matrix for the magnitude of the normsl component of the
induced velocity. The stirength of the shed vortex sheet is integrated

to obtain the optimum spanwige loading on the nonplanar wing.
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The téchnique has been tested on nonplenar wings with various
dihedral angles and locations of the nonplanar wing sections. The
nonplenar wing results are presented relative to those of & planar
wing with elliptical loauing. Both wings elected have identical 1ift
and total wing peripheral length, end thus -equal skin friction drag.

It iz shown that the ratio of the induced drag of the planar wing to
that of the noﬁplgnar wing is slways less than one. The results are
in complete ggreement with thﬁge obtained by Lundry. ‘However; because
Iundry compared wings. with equal span instead of equel peripheral
length, he found this ratio to be always greater than 1.0.

in conclusion it can be sald that if the span is the limiting factor
it nay be sdvantageous {0 use nonplanar wings with dihedral angle and
fencea. However if the wing peripheral length is limited, then the
planar wing is always the most desirable configuration, with the highest
1ift over drag ratio.
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SYMBOLS

sbbreviations as defined in appendix
induceq drag

variable along vortex sheet segment
induced drag efficiency factor

lift

total number of the vortex sheet ‘segments
urit normal vector

-abbrevistion as defined in. the eppendix

total number of wing and fence tips on a
semigpan

radius vector

radius vector

abbreviation as. defined in the appendix
ratio as defined in Eq. (27)

downwash velocity

coordinates of the vortex sheet segments

unit vector in downstresm direction

coerficient defined in Eq. (11)
coeff dent defined in Eq. (30)

‘bound vertex strength

ahed vortex sheet gtrength

angle defined in Pig. U
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SYMBOLS (cont'd)

Superscripts:

Subscripts:

3

vii

dihedral angle
non-dimensional spanwise coordinate

elr density

indicates the side of the vortex sheet &t
vhich the downwash. is computed

indicates opposite side of the vortex
sheet from where the dovnmwash 18 computed

properties of a planer, -ellinrticallw
loaded wing

dndicates .anyche ‘of the Q tip sections
on the semispan

indicates the location of the inducing
vortex sheet segment

indicates the location at which the
induced velocity is computed

indicates the vortex sheet centerline
conditions
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INTRODICTION

A progressively incressing need is beconing apparent for aircraft
with STOL capebilities. The forty plus versions of fixed wing sir-
eraft existing todey, with both VIOL and STOL capebilities, represent
a bare initial effort vo satisfy both commercial and military require~
ments. Commercial nee’s include downtown-to-ajirport transportation,
vhile those of the military are for operations from short runways such
as those found on aircraft carriers. |

STOL cepability requires unususl wing configurations, often using
maltiple leading edges and trailing edge flaps with boundary layer
control to obtain high lift coefficients. These modifications often
require many fences to separate wing sections with different 1ift

coefficients. The frequent use of boriszontal or vertical englire nacelles

&ddg further ¢o the nonplanar nature of the wings., Aircraft on Naval

carriers can nenefit from & nonplanar wing configuration so as to redwdc

__ thedr requized span -aud permit compact storage.

The cem_pi.zzerftéc:fmggg&i developed in this paper caelculates the

égtiﬁxim 1qaéi£§- pg‘ﬁg{zf ~no§§l§,m.r wing of given complex geometry for the

ninimum 1ift over ‘dra;g‘ ratio. Such a computer program cean be used to

determine the effect of size, location, and dihedral angle of the fences

employed on the overall 1lift to induced drag ratio of the wing. The
computed optimum loading can determins the desired wing twist end

taper.
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The optimization technique is based on Munk's) eriterion for
ninimum induced drag. This criterion requires thet the cosine of the
local dihedral angle ejual the normal component of the local induced

velocity divided by a constant.

-— segment of shed vortex sheet

€ ainedrel angle.

Wi

'W.L.,, optimum when ¢eos em-_:-_ :

constant

Figure 1: Munk's criterion £ 2 minimum induced drag.

For all planar wings, regerdless of taper, aspect ratlio, or sweep,
the optimum spanwise loading is elliptical.

Because the induced dreg of & .ing is only a function of its
spanwise loading and not of the agzet ratid it is dasiradle to derive
the optimun spanwise loading in the Trefftz plane, which is located
iti'finit':;l.y fer downstream of the wing, where all chordwise effacts can
be ignored. The two-dimensional Trefftz plane is perpendicular to
the .)uble-infinite shed vortex sheet, which is assumed to remain

undistorted and to maintain the same nonplaiaa.r ghepe ‘as the wing.

1Superacript. nurbers denote references.
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. Trefftz plane

Figure 2: Schematic view of the Trefftz plene.

Lundry2 has presented a solution to ¢©i: problem by computing the
potential flow field which setisfies Munk's criterion. 3By superim-
posing & uniform crossflow on the two-dimensional vortex sheet, he
cancelled sll the normal components of the downwash velocity and thus
satisfied the boundary conditions on a solid surface. Next he
computed the velocity potential around a solid surface in the shape
of the nonplanar wing by using a Schwartz-Christoffel conformal mapping
technique. Then by subtracting the velocity potential of the super~
imyosed crossflow, he found the desired veloecity potential of the
induced velocities. The strength of the shed vortex sheet was foﬁnd
from the difference in the upper and lower tangential velocity

components. Using integration, he subsequently ccmputed the optimum
spanwige loading on the wing.
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f? . The velocity past a solid surface ia tle shape of the nonplenar T
E}; ? :;D" wing is zero at stagnntion polnits, e.g., the root of & fence on the
- wing, end is infinite for the flow elong the wing where there is &
B 1
*e diseccutinuity in the dihedral angle, such discontinuities will be
referred to as bends. Consequently Lundry's anslysis shows that the

strength Y of the vortex sheet segment shed by the fence ism zero
at the fence root. In eddifion & vortex ghect segment shed by either

. the top of a wing, fence, or by the bend in the wing, has infinite

vortielty. Such segmem‘;s require gpecisl treatment in a numerical
calculation.

Lundry's analysis covers straight line segments because of the
nature of the Schwartz-Christoffel transformation, dut others3 have

used meppings which have transformed curved lines to straight lines

and performed a similar analysis. In references 2 and 3, the analysis

i

was performed in the Trefftz plane and an undistorted wake agssumption

[

wag maede. A recent publication by Blackwellh deacribes a numericsl

s o

technique which does not use conformal mapping. His technique iz a

T cnmr e T

special form of lifting surface theory, which provides informatiocn

IO
s — ¢
Pe———1

on both the spanwise and chordwise optimum loading. Experimentsl

j work on nonplanar wings has beern reported by Ro‘berta5.
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METHOD OF ANALYSIS

The vortex sheet shed by & given wing, with arbitrary shepe
and number of fences, is assumed to extend to infinity without any
distortion. Only wings with an optimum loading will have a trailing

vortex sheet which satisfies Munk's criterion at any spanwise

location:

W
cos O, — L m
i o= constant (1)

This criterion can bhe appiied to the spanwise direction at the wing
or at any other nermal surface downstream of the wing. If the
normal surface iz zhosen infinitely for dowmstream of the wing then
one deals with the Treff'tz plane and the problem has become two-
dimensional. The veloclties found in the Trefftz plane are irnduced
by a two-dimensional double-infinite vortex sheet of strength Y .
The shape of the shed vortex sheet is equal to that of the nonplanar
wing, assuming an undistorted wake.

Identifying the semiwing total periphersl length by 47 max = 10
and the bound vorticity of the wing by r o= P ( o?) , then the

strensuh of the shed vortex sheet is:

r=-4 ®
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d

L g

Y ST S VSIS




A
a

R Ny T iy
TETRAL
ra
E)
<
*

(R TTNRL B
3

.

j_,:f
L]
Adromal e et v

=3

ay g i
§oT fEppontee: ,

e -
A‘ﬂA

é If the senl-vortex sheet total periphnvi. fu. . Y max o d
w N
E i iuts N sogments of egual lengbh & -7 a8 shown in Fig. 3, then:
% -
il ( =
A ) uuu{«\! &\;}‘)
1 TN
.

Define the number of wing and fence tips on the wemlspan &8 Q, and
if euch tip has N(j) vortex sheot segments, where 1.0 & §z> <

then the total number of vortex sheet segments ig:

J=1

\
>
“‘l

An example ir shown here with Q = 5 and N = 26,

centerline of wing
and vortex sheet

I : ‘me—-y 4= N(;)
|
n=N
R | l 2 =Ng) " 0
\\ l ' | .80 F 5] Y"*o WYJ“”.Y{I
\_(__,____{_____x Slo i
\ ol + af 2 4 ¢
\ N L
\\ I 2
' 3 4 =N¢)
‘ !
: ‘ L4
f »fu“@)

THECRTER

i

Y 0 S

Figure 3: Example of an arbitrary noaplanar wing shape.
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Munk's eriterion will be satisfied at N-Q stations n 3y
where n varies from 1 through N( - l. The n(s) stations are located
on the right hand side of the vortex sheet; because Munk's eriterion
is sutomatically satisfied on the left hand side owing to symmetry.
The normal component of the velocity induced at n 3) by the
entire shed double Infinite vortex sheet is W L 5 This

veloeity component is composed of the sum

Wingg = AVYL a@) . me) (5)

N(i)“ﬁ(!) m(3)=0

wvhere A W.,L P is the velocity induced at n(4) by both
the left hend and the right hand vortex sheet segments located
batween: stations w3} end m( 341 The strength of these vortex )
sheet segments is: < Y (%) for the right hand side and = ‘r("?)
for the symuetrically opposite segment on the left hand sie. Using

the Biot-Savart law and leaving off the subscript (J) gives

AV o = fﬁ%?[?.(;;jﬁxz)] dh +

prva—

SR R e PR e v gy
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i% {, h is the running variable in the 4? direction having a meximum
§ i length A»»? .
g i z is the unit vector in the downstreem direction.
% ‘ n is the unit vector normal to the vortex segment at point n.
g} FS;n {s the radius vector from n to the right hand vortex sheet segment
ﬁ . at m. :
‘ P;’", is the radius vector from n to the left hand vortex sheet segment
%i at m. .
- %‘ centerline of vortex sheet
] -y ! +y

_mT hsin@w

-

>

~3
Mo
t

@J
3

[ 1 e ]
[ owwov—" PO

z,,+h cos @,

Figure 4: Schematic presentation of the geometry used in Eq.(6).
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Where v and R can be expressed as functions of the known coordin-

ates cf the\vortex sheet gsegments:

i

Rm,m = (xm-b- h cos 6., x,) cos 8, +<3m + hsin©y, - 5.,,) sin 6, (g a.)

*

Rm’m .-:-..(—-Zm-la cos O, ~ ,,)case.,, +<5». + hsweo,, -y,,) SIN 8, (8 b)

R is positive for W < \%—»\ and negative for Y > \JZI-\

while r@ is positive and can be written as:

m,m) Cx +heos® -x) (3 +hs:u9-30 (94)

(Fo) = Cehen 8- 2) 5 h om0 -5)° 6»)

To be able to integrate Eq. {7) one has $0 assume a vourtex distri-
bution along the segment. Good accuracy has been obtained by assuming
a linear vortex distri’butipn, 80 that ‘r becomes & function of the

two unknown values at the ends of each segment Yin and ‘(‘m" :

I

Y= Yn * 35 (Yo = Vo) Q

PR, 5 37 wivmamat et SRS S
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Combining Eqs. (7) and (10) gives

é"w-‘- m,mm Y’Vn(“‘m,m*. 7'% m) (‘r'mﬂ ”‘)( 3"‘)"‘ 4""‘")

a
Tmym = - [ R dh
H] 27 4 (r:"”m)a
&7 "
— - R
o(z,,,, = L r'{:‘m y dh
o ’
s "
A 7 [ R | d
e 2w o AO? L(r:'ﬂoﬁ :
A% R
O g o == ..2'.:}? | } dh
’ o A? L ( My

Equations (12-15) are integrated as shown in appendix A to give

%lm,mx“'"}?r[?('q EE;)-#-—- " + £ +l‘

GN* GN

.
_ —ifg(p_ ET) . E ! T ,\
Ao mpri z-n-[ <:D ‘z) 2 & ket T kn L

o L[ (2236 A0 (A2 4| Lo o
o o [T 2E KD (B L ok

|
|

10

()

&
(3
(4
02

(te)
(7)
+ B] (a)
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The symbols A, B, C, etc., are functions of the known coordinates

and dihedral angles of the vortex sheet segments (see Eqs. (38-47) in

Appendix 4). Equations (16-19) are the general forms of the coefficients

in Egq. (_.'_I.l) except for the speciel cage that m = n~l or m = n, For

m=none findg o, = 0o and for m = n-1 one finds &, = -0
3™ m,m

This is easily understood when it is realized that under these special

conditions the contribution of the right hand side of the vortex sheet

[AW'L o m-:] is computed at the end of vortex sheet segments of
mIm 1
finite strength Ym:- "n and Yomem-; @0d then the velocity becomes

infinite. This problem can be .avoided when [A W, ]
m, MEMN «) o
men 1
is computed for both adjacent vortex sheet elements simultaneously as

shown in Fig. 14 (see Appendix B). The results of asuch_special treatment

are:
( _ — cos Y (6 -ﬁ“.)
dl My Mmmey - ‘2.1;: ' (2.0)
for m = nel <
| Ky myman.y = @ (1)
4 4,
— 4 L23 /zn.(eea - 6. -:)
o‘,”’,‘mzq 297 d (22.)
form=n 1
N cos l(On- O..)
\ x.?‘h,‘m:ﬁm -t- .;.Tr“ (23)

These equations hove been derived in appendix B (see Eqs. (53-56)).
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Another difficulity arising in the application of Eq. (1l1) oceurs
vhenm + 1 = N(3) or Ypyy = YN(j) which is the vorticity shed
by either a wing tip or a fence tip. This vorticity is, of course,
infinite and when used in Eq. (11) would make AW, n,m=.N(5)-1= e
This problem has been overcome by assuming that Y shed by the non-
planar wing goes to infinity at N( 3 at the same rate ss the vorticity
\( x shed by an elliptically loaded planar wing becomes infinite at
the edge, Defining the semispan of the planar wing by 'VN = 1.0 and
the strength of the bound vortex at the centerline by Rxx gives:
5 X

v¥= I

-]

(ﬂ (a-77)*

and Y* at the distance 2 A 7 from the edge is given by:

X 2 ”
Y —-r Py- or I .-_-.Y* _'_.:;71?_.3.)..2
N-2 (, 72 )& N-2 g,
ey Q‘_“_?ufa)f L2 \
Y Y -2 71*?-2 (i - ,72)4 @4)

The normal component of the downwash velocity induced at station R-1,
adjacent to the tip is most sensitive to the accurscy of the vorticity
at the tip. If the downwash velocity at N-1, induced by the vortex

sheet segment between N-1 and N is computed, the result will be infinite,

This is because “AWJ_ ¥t is evaluated at the end of a vortex sheet
o
with finite strength. However ,3 it [A WJ—N ‘] is induced by both
o, of

adjacent vortex aheet segments, then this normal vefocity will be finite,
as shown in Eg. {52) (sce Appendix B).
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One cen compute [A W, N_'] induced by the two adjacent

°‘u°(3
segments of strength Y* as shed by an 1#11iptically loaded planar
wing by:
N
/

[A ] j ! dx Yn 2 (' 7N-z) f p el

Wi . 2 " . -m*\%

l“u"‘a Puea - 7N' N2 '7u-£47 7“'l><l 7 )a

replace by cos z ard d by - sin 2z dz
7 K

[AWJ_N ] YN—z ('-’?N-Z) [ -cos z dz

#, s 27 -2 (cos 2 - cos z,_ D

(’*"l.. 12;.;_?; <7"" (z 5)

b )(ﬂu—)é( r/;

2 v
[Aw LN l] = Y}:-z ,(“'73-2)2 [‘os.,7~-+ _’Z“ A

) O(,,c(' 2w 7N-:. : (l '901

: X

Cocmpare [Aw Loy I] to the expression found for the velocity
Ao, g0, .

induced by two adJa.ce;a’t ifortex sheet segments with & linear vorticity

distribution as was derived in Eq. (52) (see appendix B) and which is

repeated here as:

(s 9 o5 (8 yer e,,c,.)-z)] (26)

Tess-
AWJ_ ) —_ (3)-2
[ N(:!)“] 2T YNU)-Z

°(: ""3

If the induced velocity [Aw L w- ] iz set equal to [A W,
of; 5K

and the vorticity YN . equal to YN (5)-2 then an equivalent

ﬁ,nite‘ value for the tip vorticity YN ) is found as & function of
the vortieity YN (fy=2 o

et At b bt ittt % %0 v e e e e oy L
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Equating Eq. (25) to Eg. (26) gives the equivelent finite tip
vorticity YN ) 8s:

Yn ()= T YN(J‘)- 2 (27)

where T is given by:

'r I + (‘"q?u-:)& | cos-'o? - EZ.N;L X
- P4z €03 "3(9»:(3)-:' On(iy-2) " (=)’

(1+ "7~.,)<|+ j*(’ - ') ' (28

Equation (28) is quite insensitive to the size of the increment used.

For example:

Am =19 gives T = 5,986
-3

fa) ? = 10 gives T = 5.991
-2

dn =10 gives T = 6,04h
-1

A'7 = 10 gives T= 6,71k
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Figure 5: Graphical presentation of the finite tip strength approximation.

All the terms in Eq. (11) have now been defined and the next step
is to solve the optimum vorticity distribution in the shed voritex sheet,

Applying Munk's eriterion from Eq. (1) gives:

N¢a) Ney-1 W
A
; ; d ey s med)
cCoOSs em(’) - —w k— W°
W, N@) = N’“, m(=o

Using the ecpression for the induced velocity from Eq. (11) gives:

cos ©

Ng=N(y m™E=°

{ma)
Am@w (o(amw +

Wo %4 (-’f)>~n@)

N N
'"l(.f
§ § -
(@) = Wy \iny A2y % ™ M(ij)

+
m(3)

(29)
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This equation can be revritten in the form:

N(a) fbl
‘m *
cos Bugy = _..__.(._Z Bon 8y (30)
N =Ny m(@)=o

where the coefficients are as given below, with subscript

Bongsy
(3) deleted.

(1)
B n =(%1, + %y =%y - )
maus ~m e = ©

B'm:ai :':(“3« * 0(4‘9””‘-:-(0(,’“ * o‘“m - 0(34\—“4'“)mm‘\.

- ew .

@,m g'n.‘{'(dim + x%»;‘m‘m-_;*.(“lm + O(ZM - 0(3“ - d“m)ﬂhmﬂut

(2) ccos (6t
pmxm_.’?_((xam -!-0(4»‘ -2 +< Cos 2.( m~ O r) _‘_‘xz "'“4.4,,)

2w Jrn s Mes |
””'”"" "‘"(“4m),m =m-y ( z2m ™ 0(‘4”')%:41
@) cos 4(6,, -6,.,)
MmN+ < 2T T g m=m+ (0{!4‘ + Kam = 0(3”“ “4“‘);,,,:,”_”

pm,nm-n.""'( im?t 4»\,,.,, 2N +1 +(°""\+x2"" ~ Fam ‘“4"‘)%;«-&1

(3'"“'”(*)‘3 < im 4’)’0\:!‘1@’)-4 Im m 3m 4 m= N@)-3
O s i ety +T( 54
P BN(d) (3"'1 4~)mau(j)-3 .m+ M Im 44.)"'\\"‘5'(1;2 "M:N(i).l

o +o<) +<o( +0l, . - oc)
ﬁms”@) 3 e N2 N T AN o K(D) -1

ﬁm o is irregular tecsuse it is the first coefficient; p ey is irreguler
&)

because m = n + 1 ﬁ(i‘(’)
Lhatd .l

because m = n - 1 ,ﬁ —m is irregu.er bLecantze m = n ;(5 ) is irregular
s M)
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Equation (30) represents a set of N-Q equations for N-Q unknown velues
of Y'm () » The solution of this set of linear algebraic equa-
tions is obtained with the use of the digital computer subroutine
DECOMP.6 The values of —%&‘ﬂ- thus obtained, represents the
dimensionless opiimum strength distribution in the shed vortex sheet.
To compute the correaponding spanwise distridbution of the bound
vorticity F‘ one has to integrate Eq. (2) numerically. First,

the integratioln is performed along the fences starting with tip N(a)

amat wing root

7
r(;;) - ..[ N@Y cioz == 2:. "il'ﬂ'[ Y ™ Yan(j-)ﬂ] (3')
K|

3y N gy=

This integration iz carried out along the wing, starting at the
wing tip R( 1) and proceeding to the csnterline. Every time a fence
reot is encountered the bound vortex orn the wing experiences s step-

like increese of msgnitude ‘P(g)

meyat 15% fence

Z’lng root
r(.‘n) = "z_f"N Ym(o), * Y:m(’l) flj‘ + Pf’-) *+

m{)= N<.)“I

m

Z e { Yomey * Ymoﬂ] 2

m(,} is

1 1%% than
at 1% fence
wing root

The lozation of position n is showm in Rig. 6,
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c
T RESULTS
-
i
e The optimum loading computed with this method can he vsed to
E - ¥
? 1 y calculate the corresponding lift and induced drag or the wing. The 1ift
; 1 ~; L is proportionel to the vertical componeat of the force obtained i
L § from the vector product between V,  and | and is: |
Ao g ;‘
}
;| L + Tona .
-l i, 4
§ % l L — / ,om(\/wx P) cos 6 dm (33) :
A = Tmax |

ally

The induced drag :D; is proportional to the vector product -v? X M
using er‘:- W‘Lm(mx[‘)-_-_- wo CO59<mxr')

+'7‘mnt — .
. I, :[ Lo wo(ﬁn‘x r')cos Ody (34.)

: “Mmax

-

pam————,
L

R e e

The 1lift over induced drag ratio for wings with optimum loaling is then:

i s i - . it el Y © Sl Qs smm A i sl

L Ve, (o)

-
Y
E

To compare the L—/ D retio between an elliptically loaded planar

s

wing and an optimum loaded nonplanar wing, one should spezify that both
wings must have equel 1lift, and use Eq. (35) to define an induced drag

_? efficilency factor k as:

s

R ORI A 9 S NI A SISO S R g St T
o R e e 22

L
g .?;.]..mm — Dipamr . Yo (36)

s e

[3%‘] Di nonplanar Ws nonplanar i
' »
. > planar

e e d BT T

e ma s A < A v rie . e AL o

R

"
1
i3
1




bt |

b |

¥
4

GRS T SR R NS N VP U TSI RS e ST et

o

&——"}

SR s

-4

 Sna L2 |

Sk

oo S sl }

N T Sy MmO VAL e PaSes W SRy o

20
The folleowing argument shows why the efficiency factor k is less than
unity when the two wings being compared have equal total peripberal
length. Both wings are chosen to have equal 1ift or:
+7‘md& + max *7'max
L [ q Meos ) [
- — cos 9 d C‘OS e a
Pw Voa ’? 7 67
~Trmax ~Pmax “Pmax
planar nonplanar

This inequality is given by the mean value theorem.

;”7";::
d”? en

"h&k o

Defining an average bound vortieity F_

-ﬁ & (ces ©

planar 'wmr. nonplanar

—
|

°r planar < nonplanax

Mwax

Y d i then

If one defines an average shed vorticity ?:
— max 9

according to Eq. (2) r‘N Y  Pmaz . From Eq. (30) it follows
that -‘f ~ W, or combining these results Mo W, . Porax
Asgsuming the proportionality.constant o be of the same order of

magnitude for both the planar and the nonplanar wing one obtains:

[w° ) ,?‘“Mt] < [w° "?qu]
plansy nonplanar

Wo! plenar <~ +Wo nonplanar
w°n1ana.~:
ononplanar

This is the definition of the efficlenty factor uged.
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The effect of a dihedral angle on the efficiency factor k ,s 1.0
is shown in Fig. 7. Both planar and nonplanar wings have the same
total peripheral length and consequently the same area and skin
friction dreg. The nonplanar wing has a shorter span but its perfor-~
nance 1s worse because of the lower 1ift over induced drag ratio.
Seemingly contradicting results are found in Ref. 2, where the effi-
ciency factor k }, 1.0, because Lundry has compared the nonplanar wing
with a ploner wing of equal span instead of egual peripheral length.

Under these conditions the area and the skin friction of the nonplanar

.wing is larger than that of the planar wing but its performence is better

because it has a higher 1lift over induced drag ratio than the pianar wing.
The optimum losding computed in this peper is in exact agreement with

the results obtained by Lundry in Ref. 2, except the efficiency factor

k is defined differently (see Fig. 7).

In conclusion it can be said thet if the span is the limiti_.ng factor
then it may be advantageous to use nonplaner wings with dihedral angle
and fences. However, if the totel peripheral wing length is limited,
then the planar wing is always the most desirable configuration with the
highest lift over drag ratio.

The numerical solution was tested for s simple nonplenar wing with
a nlanar center section and a dihedral angle © , which is constant
for the outer portion sterting at "79 ’ + The optimum vorticity
distribution in the shed vortex sheet is shuwn in dimensionless form
in Figs., 8 and 9. There is a': sharp increase in Y neer the bend in
the wing, N = 100 in this calculation. The ratic between the bound
verticity r‘ and its everage value F is shown in Figs. 10 and 11,
The effect of the dihedral engle on the required increase in the optimum
loading is shown in Figs. 12 and 13.
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B K CONCLUSIONS

i
e

The results of this numerical technique have heen compsrad to the

o conformal mapping solution as presented by Lundxyz in his configurstion

5 anci excellent agreement was obtained.

e s s s s T
1 .

The numerical solution used in this program takes 1ittle computer

time and is suitable for computer optimization of fence position, size,

and dihedral angle. Only the ﬁ matrix coefficients that belong to

e Y L TN

- the fence in question need to be recomputed for esch configuration

change.,
‘ The step size 47 need not be constant = Yy as ves used
here., Wherever yN aprears in the equations it can be replaced by

the locel magnitude of A'? used.

- The input data for the computer shonld inelude the total number

- of vortex sheet segments N and their coerdinates X, 4 Y., and
- F dihedral angle 6,, . In addition A Do must be specified for
N each station n, if the segments are not of equal length.

x { It is noteworthy to realize that l’..uudry2 compa:x'ed his nonplanar

wing to an ellintically loaded pluner wing with the same span and

found the induced drag efficiency factor k¥ > 1.0. Consequently, when

. ’ the span is the limiting factor it is advantageous to use a nonplsndr

e

e
S 4

wing. In this analysis, ‘the nonplanar ving is compared to an ellipti-

R B s o B

cally loaded plenar wing with the same peripheral length.‘ The induced

drag coefficient k was found to be é 1.0, and consequently if the

o s
. - &

total peripheral length is a limiting factor it is advantageous to use

A s LAY Rl S A

a planar wing. Either method can be used to find the optimum loading

E R
46

Sy

of s nonplaunar wing.
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APPENDIX A

The integration of the coefficients

X}y = "'l-,‘-l'-f dh (’2)
oy = .1%/ dh (13)

= . .!'.... [ dh I
3 m,m 'ﬂ'[ 7 (M‘m) (4)
°‘4~»~»=-'-af e 3(%”%'% ()
° M)

Equations 8a and 8b , can be written as:
orn zCA + hB)m,'m
where A om ..—.—.-(x,m- x,a cos +<ym-gm) sin 8, (38)
and Bm,%::-. cos Q,M cos B, + Sin e, siv e, (39)
Rmy"" =<D +h E)'n,'m

where D, = ..(xm+ x,,) cos 6 +(9,m- ‘a"m) SING, (4@

and E - cos @, cos &y, + %14 6, sin 6, (4!)

3
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Equations 9a and 9b can be rewritten as:

() =(h'+hF+G),

where Fop == 2 cos@,(x ~x) + 2 s O (Yom=ry)
wd G (%m=2y) + (=)’

(r;;)m)“ =(n**hT+K),

vhere Jm m == 2 €03 9%(’%4-%) +2 SN @M(y,m.%)

and k’n,'m o (X,m-# xh>a‘ + (34\1" y»,)a

Inserting these expressions in Egs. 12-15 gives:

4

) —
n,m 27\'0 hl‘l"’\F"‘GM,,m

47
o« = _'_[_ D+hE o
B 2w Wi hT+k
©

m,m
2 A +h*B
«Bm,,.,\::'_ --!-[ ' h + 0”’1
> 2.11‘0 A'? hl+hF+G Vo, m

A

7
» .=..._._'_.f_.' hD +h E ) 4y,
AP\h*+hTek /.

M)
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APPENDIX A

The denominators are of the type aha + bh + ¢ = H ,with ha.c>/ b 2
2 2
This is because: 4 G,,,),m > Fm and 4K oy 2, T

»m ", m

Proof for 4 G""*""z =

4] (-2 + (o)) > 4 [(xq,,..x,,)‘m B+ (i, ) 5 O
2 (o= ) (7 ) 1Y O3 a,m]
0> [..(r,,‘-x,‘)zs N0 = (g 1) 05260 +
2 (tuu %) (=) 5 61, o5 e,,,‘]

0> ~ [(x.,“- Z.,) sinG,, — (‘3”- ””D cos Qm\Jz

L1

B (bac-b2)% (hacv2)%

5 -
When 4 ac - b“> 0 then: fdh=___..a.. tan™t _oah + b

When 4 ac -b© =0 then: fgh_,,: -2

for all values of lLac~be

bhas .. 1 |H - b (dh
[n 2a&" 2af}l
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“i APPENDIX A
2 &7
oo for 46,,.’,"‘— E,,m>o put f E‘ﬁh =7 end A‘7m._"3
ot 1 °
F

- 2 -t &+ F - F .
G T
My

2
for 4 G,,,’,m -F = 0 or very small

”,m
) 2 2
E"’"'"’{ F A+F} @6y
LI
for 4Tm,,",mk~"m>o put f _%.‘.'.=S and Ao?-.—_.;".
o

S = 2 ,\"' +K R I
o= T, (e ~

" ym
for 4-3:"’”‘ —k:’m.:-. o or very small
S =¢.2 _ _2
m,m {k -&+k} (475)
N 'h M
— -1 B
X, mym = o P(A * = 'e"'l en: t 'é%"‘" (49)
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APPENDIX B

The specisal case is given where m = n and m = n-1, Under this
special condition the normel component of the induced velocity at n
is evaluated at the end of a vortex sheet segment with finite strength

an 3 consequently the contribution to AW from the

4 mym
adjacent segments on the right hand side of the vortex sheet, as given

by the coefficlents o, and o, will be positive and infinite for

m = n where o I . m ”a o0 and be negative and infinite for m = n~-l
’ t -3

vhere & =« . This infinite velocity can be avoided if

’M,Q‘ham-,
the integration is carried out over both vortex sheet segments simul-
temeously as shown in Fig. 1%.

YM-N

| I
YT r’h - ;r.”

//V - 3
Yq-—: 7

shed vortex sheet

"/2- (em - q,.')

N/ atrection of [AW,,_ m man ]
ot

maNe) "0‘3

Figure 1hs Vortex sheet segments for m = n and m = n-l.

When the dihedral engle O, > [ T s then there is a bend in the

vortex sheet and the corresponding exact soclution of \gen = 0 .
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APPENDIX B

In order to smooth out the bends and avoid the necessity for Y to
go to infinity, one can choose the unit normal vector A along the
average normal to the two segments as is shown in Fig. 1k,
Applying the Biot Savart law as in Eq. (8) gives the velocity
component [A w Loy mmme ,] induced at n by both neighboring
Yomae m Jo,,ay

vortex sheet segments, but not including the contribution from the

left hand side of the vortex sheet as given by ¢, and o .
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Linearizing the vorticity distribution as in Eq. (10) produced a dis-

continuity in Y at station n. This vorticity distridution cen be
replaced by one continuous function over both segments Y, , and by
cone distribution Yz vhich goes to zero at station n so that

Y= Y; & Y‘z as shown in Fig. 1h4.
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APPENDIX B
using f_ﬂi_, = a&)?-al and fﬁ d7== 74'(5"9'&1}7-5/

gives

l;é“w.l. m, rm-r'n-l] - =22 /?_(i:@m) [ Ym:»w - Y‘h-'ﬂ-a] (5'2)
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As a result of this, one can write with the use of Eq. (11), the con-

tribution of the right hand gide of the vortex sheet as:
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Equating this to Eq. (52) gives the coefficients:
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